
26 Computer

Exploring Steganography:
Seeing the Unseen

S
teganography is the art of hiding informa-
tion in ways that prevent the detection of hid-
den messages. Steganography, derived from
Greek, literally means “covered writing.”
It includes a vast array of secret communi-

cations methods that conceal the message’s very
existence. These methods include invisible inks,
microdots, character arrangement, digital signatures,
covert channels, and spread spectrum communica-
tions.

Steganography and cryptography are cousins in the
spycraft family. Cryptography scrambles a message so
it cannot be understood. Steganography hides the mes-
sage so it cannot be seen. A message in ciphertext, for
instance, might arouse suspicion on the part of the
recipient while an “invisible” message created with
steganographic methods will not.

In this article we discuss image files and how to hide
information in them, and we discuss results obtained
from evaluating available steganographic software.
For a brief look at how steganography evolved, see the
“Steganography: Some History” sidebar.

IMAGE FILES
To a computer, an image is an array of numbers that

represent light intensities at various points (pixels).
These pixels make up the image’s raster data. A com-
mon image size is 640 × 480 pixels and 256 colors (or
8 bits per pixel). Such an image could contain about
300 kilobits of data.

Digital images are typically stored in either 24-bit
or 8-bit files. A 24-bit image provides the most space
for hiding information; however, it can be quite large

(with the exception of JPEG images). All color varia-
tions for the pixels are derived from three primary col-
ors: red, green, and blue. Each primary color is
represented by 1 byte; 24-bit images use 3 bytes per
pixel to represent a color value. These 3 bytes can be
represented as hexadecimal, decimal, and binary val-
ues. In many Web pages, the background color is rep-
resented by a six-digit hexadecimal number—actually
three pairs representing red, green, and blue. A white
background would have the value FFFFFF: 100 per-
cent red (FF), 100 percent green (FF), and 100 percent
blue (FF). Its decimal value is 255, 255, 255, and its
binary value is 11111111, 11111111, 11111111,
which are the three bytes making up white.

This definition of a white background is analogous
to the color definition of a single pixel in an image.
Pixel representation contributes to file size. For exam-
ple, suppose we have a 24-bit image 1,024 pixels wide
by 768 pixels high—a common resolution for high-
resolution graphics. Such an image has more than two
million pixels, each having such a definition, which
would produce a file exceeding 2 Mbytes. Because such
24-bit images are still relatively uncommon on the
Internet, their size would attract attention during
transmission. File compression would thus be benefi-
cial, if not necessary, to transmit such a file.

File compression
Two kinds of compression are lossless and lossy.1

Both methods save storage space but have different
results, interfering with the hidden information, when
the information is uncompressed. Lossless compres-
sion lets us reconstruct the original message exactly;

Co
m

pu
tin

g
Pr

ac
tic

es

Steganography is an ancient art of

hiding information. Digital

technology gives us new ways to

apply steganographic techniques,

including one of the most intriguing—

that of hiding information in digital

images.

Neil F. Johnson
Sushil Jajodia
George Mason
University

0018-9162/98/$10.00 © 1998 IEEE

.

therefore, it is preferred when the original informa-
tion must remain intact (as with steganographic
images). Lossless compression is typical of images
saved as GIF (Graphic Interchange Format) and 8-bit
BMP (a Microsoft Windows and OS/2 bitmap file).

Lossy compression, on the other hand, saves space
but may not maintain the original image’s integrity.
This method typifies images saved as JPEG (Joint
Photographic Experts Group). Due to the lossy com-
pression algorithm, which we discuss later, the JPEG
formats provide close approximations to high-qual-
ity digital photographs but not an exact duplicate.
Hence the term “lossy” compression.

Embedding data
Embedding data, which is to be hidden, into an

image requires two files. The first is the innocent-look-
ing image that will hold the hidden information, called
the cover image. The second file is the message—the

information to be hidden. A message may be plain
text, ciphertext, other images, or anything that can be
embedded in a bit stream. When combined, the cover
image and the embedded message make a stego-
image.2 A stego-key (a type of password) may also be
used to hide, then later decode, the message.

Most steganography software neither supports nor
recommends using JPEG images, but recommends
instead the use of lossless 24-bit images such as BMP.
The next-best alternative to 24-bit images is 256-color
or gray-scale images. The most common of these
found on the Internet are GIF files.

In 8-bit color images such as GIF files, each pixel is
represented as a single byte, and each pixel merely
points to a color index table (a palette) with 256 pos-
sible colors. The pixel’s value, then, is between 0 and
255. The software simply paints the indicated color
on the screen at the selected pixel position. Figure 1a,
a red palette, illustrates subtle changes in color varia-

February 1998 27

Steganography: Some History
Throughout history, people have hidden

information by a multitude of methods
and variations.1,2 For example, ancient
Greeks wrote text on wax-covered tablets.
To pass a hidden message, a person would
scrape wax off a tablet, write a message on
the underlying wood and again cover the
tablet with wax to make it appear blank
and unused. Another ingenious method
was to shave the head of a messenger and
tattoo a message or image on the messen-
ger’s head. After the hair grew back, the
message would be undetected until the
head was shaved again.

Invisible inks offered a common form of
invisible writing. Early in World War II,
steganographic technology consisted
almost exclusively of these inks.1 With
invisible ink, a seemingly innocent letter
could contain a very different message
written between the lines.3

Documents themselves can hide infor-
mation: document text can conceal a hid-
den message through the use of null
ciphers (unencrypted messages), which
camouflage the real message in an inno-
cent-sounding missive. Open coded mes-
sages, which are plain text passages,
“sound” innocent because they purport
to be about ordinary occurrences.
Because many open-coded messages don’t
seem to be cause for suspicion, and there-

fore “sound” normal and innocent, the
suspect communications can be detected
by mail filters while “innocent” messages
are allowed to flow through.1 For exam-
ple, the following null-cipher message
was actually sent by a German spy in
WWII1:

Apparently neutral’s protest is thor-
oughly discounted and ignored. Isman
hard hit. Blockade issue affects pretext
for embargo on by-products, ejecting
suets and vegetable oils.

Decoding this message by extracting the
second letter in each word reveals the fol-
lowing, hidden message:

Pershing sails from NY June 1.

Document layout may also reveal infor-
mation. Documents can be marked and
identified by modulating the position of
lines and words.4

Message detection improved with the
development of new technologies that
could pass more information and be even
less conspicuous. The Germans developed
microdot technology, which FBI Director
J. Edgar Hoover referred to as “the enemy’s
masterpiece of espionage.”1 Microdots are
photographs the size of a printed period
having the clarity of standard-sized type-

written pages, which permits the transmis-
sion of large amounts of data, including
drawings and photographs.1

With every discovery of a message hid-
den with an existing application, a new
steganographic application is being
devised. Old methods are given new twists.
While drawings have often been used to
conceal or reveal information, computer
technology has, in fact, sparked a revolu-
tion in such methods for hiding messages.

Space limitations prevent further dis-
cussion here. For more information on
techniques for hiding information, see
Peter Wayner’s Disappearing Crypt–
ography.5

References
1. D. Kahn, The Codebreakers, Macmillan,

New York, 1967.
2. B. Norman, Secret Warfare, Acropolis

Books, Washington, D.C., 1973.
3. H.S. Zim, Codes and Secret Writing,

William Morrow, New York, 1948.
4. J. Brassilet et al., “Document Marking and

Identification using Both Line and Word
Shifting,” Proc. Infocom95, IEEE CS
Press, Los Alamitos, Calif., 1995.

5. P. Wayner, Disappearing Cryptography,
AP Professional, Chestnut Hill, Mass.,
1996.

.

28 Computer

tions: visually differentiating between many of these
colors is difficult. Figure 1b shows subtle color changes
as well as those that seem drastic.

Many steganography experts recommend using
images featuring 256 shades of gray.3 Gray-scale images
are preferred because the shades change very gradually
from byte to byte, and the less the value changes between
palette entries, the better they can hide information.
Figure 2 shows a gray-scale palette of 256 shades. Some
images are 4-bit, created with 16 shades of gray; obvi-
ously these images offer many fewer variations.

While gray-scale images may render the best results
for steganography, images with subtle color variations
are also highly effective, as Figure 1 showed.

When considering an image in which to hide infor-
mation, you must consider the image as well as the
palette. Obviously, an image with large areas of solid

colors is a poor choice, as variances created from the
embedded message will be noticeable in the solid areas.
We will see that Figure 1b, the palette for the Renoir
cover image, makes a very good cover for holding data.

Once you’ve selected a cover image, you must
decide on a technique to hide the information you
want to embed.

CONCEALMENT IN DIGITAL IMAGES
Information can be hidden many different ways in

images. To hide information, straight message inser-
tion may encode every bit of information in the image
or selectively embed the message in “noisy” areas that
draw less attention—those areas where there is a great
deal of natural color variation. The message may also
be scattered randomly throughout the image.
Redundant pattern encoding “wallpapers” the cover
image with the message.

A number of ways exist to hide information in dig-
ital images. Common approaches include

• least significant bit insertion,
• masking and filtering, and
• algorithms and transformations.

Each of these techniques can be applied, with varying
degrees of success, to different image files.

Least significant bit insertion
Least significant bit (LSB) insertion4 is a common,

simple approach to embedding information in a
cover file. Unfortunately, it is vulnerable to even a
slight image manipulation. Converting an image
from a format like GIF or BMP, which reconstructs
the original message exactly (lossless compression)
to a JPEG, which does not (lossy compression), and
then back could destroy the information hidden in
the LSBs.

24-bit images. To hide an image in the LSBs of each
byte of a 24-bit image, you can store 3 bits in each
pixel. A 1,024 × 768 image has the potential to hide
a total of 2,359,296 bits (294,912 bytes) of informa-
tion. If you compress the message to be hidden before
you embed it, you can hide a large amount of infor-
mation. To the human eye, the resulting stego-image
will look identical to the cover image.

For example, the letter A can be hidden in three pix-
els (assuming no compression). The original raster
data for 3 pixels (9 bytes) may be

(00100111 11101001 11001000)
(00100111 11001000 11101001)
(11001000 00100111 11101001)

The binary value for A is 10000011. Inserting the
binary value for A in the three pixels would result in

Figure 1. Representa-
tive color palettes. (a)
A 256-color red
palette and (b) a 256-
color Renoir palette.
The Renoir palette is
so named because it
comes from a 256-
color version of
Pierre-Auguste
Renoir’s “Le Moulin
de la Galette.”

Figure 2. Representa-
tive gray-scale
palette of 256
shades.

(a) (b)

.

(00100111 11101000 11001000)
(00100110 11001000 11101000)
(11001000 00100111 11101001)

The underlined bits are the only three actually changed
in the 8 bytes used. On average, LSB requires that only
half the bits in an image be changed. You can hide
data in the least and second least significant bits and
still the human eye would not be able to discern it.

8-bit images. 8-bit images are not as forgiving to LSB
manipulation because of color limitations. Steganogra-
phy software authors have devised several approaches—
some more successful than others—to hide information
in 8-bit images. First, the cover image must be more care-
fully selected so that the stego-image will not broadcast
the existence of an embedded message.

When information is inserted into the LSBs of the
raster data, the pointers to the color entries in the
palette are changed. In an abbreviated example, a sim-
ple four-color palette of white, red, blue, and green
has corresponding palette position entries of 0 (00),
1 (01), 2 (10), and 3 (11), respectively. The raster val-
ues of four adjacent pixels of white, white, blue, and
blue are 00 00 10 10. Hiding the binary value 1010
for the number 10 changes the raster data to 01 00
11 10, which is red, white, green, blue. These gross
changes in the image are visible and clearly highlight
the weakness of using 8-bit images. On the other hand,
there is little visible difference noticed between adja-
cent gray values, as Figure 2 shows.

Implementing LSB. Steganography software pro-
cesses LSB insertion to make the hidden information
less detectable. For example, the EzStego tool arranges
the palette to reduce the occurrence of adjacent index
colors that contrast too much—before it inserts the
message. This approach works quite well in gray-
scale images and may work well in images with
related colors.

S-Tools, another steganography tool, takes a differ-
ent approach by closely approximating the cover image,
which may mean radical palette changes. As with 24-
bit images, changing the pixels’ LSB may create new
colors. (New colors may not be added to an 8-bit image
due to the palette limit.) Instead, S-Tools reduces the
number of colors while maintaining the image quality,
so that the LSB changes do not drastically change color
values.

For example, eight color values are required for
each color if values 000 through 111 are to be stored.
Reducing the number of unique colors to 32 ensures
that these values can be used and that the number of
colors will not exceed 256 (256/8 = 32). Each of the
32 unique colors in the palette may be expanded to
eight colors having LSB values of the red, green, blue
(RGB) triples ranging from 000 to 111. This results
in multiple colors in the palette that look the same

visually but that may vary by one bit.5

These tools take a similar approach with gray-scale
images. However, the resulting stego-images as applied
with S-Tools are no longer gray-scale. Instead of sim-
ply going with adjacent colors as EzStego does,
S-Tools manipulates the palette to produce colors that
have a difference of one bit. For example, in a normal
gray-scale image, white will move to black with the
following RGB triples

(255 255 255), (254 254 254), ...,
(1 1 1), (0 0 0)

After processing with S-Tools, the value for white will
be spread over a range of up to eight colors such as

(255 255 255), (255 255 254), and
(255 254 255)

Visually, the stego-image may look the same as the
gray-scale cover image, but it has actually become an
8-bit color image.

Masking and filtering
Masking and filtering techniques, usually restricted

to 24-bit and gray-scale images, hide information by
marking an image, in a manner similar to paper water-
marks. Watermarking techniques may be applied with-
out fear of image destruction due to lossy compression
because they are more integrated into the image.

Visible watermarks are not steganography by defin-
ition. The difference is primarily one of intent.
Traditional steganography conceals information; water-
marks extend information and become an attribute of
the cover image. Digital watermarks may include such
information as copyright, ownership, or license, as
shown in Figure 3. In steganography, the object of com-
munication is the hidden message. In digital water-

February 1998 29

Figure 3. Image
“painted” with the
watermark: “Invisible
Man” © 1997, Neil F.
Johnson.Traditional
steganography
conceals information;
watermarks extend
information and
become an attribute
of the cover image.

.

30 Computer

marks, the object of communication is the cover.
To create the watermarked image in Figure

3, we increased the luminance of the masked
area by 15 percent. If we were to change the
luminance by a smaller percentage, the mask
would be undetected by the human eye. Now
we can use the watermarked image to hide
plaintext or encoded information.

Masking is more robust than LSB insertion
with respect to compression, cropping, and
some image processing. Masking techniques
embed information in significant areas so that
the hidden message is more integral to the cover
image than just hiding it in the “noise” level.
This makes it more suitable than LSB with, for
instance, lossy JPEG images.

Algorithms and transformations. LSB manip-
ulation is a quick and easy way to hide infor-

mation but is vulnerable to small changes resulting
from image processing or lossy compression. Such
compression is a key advantage that JPEG images have
over other formats. High color quality images can be
stored in relatively small files using JPEG compression
methods; thus, JPEG images are becoming more abun-
dant on the Internet.

One steganography tool that integrates the com-
pression algorithm for hiding information is Jpeg-
Jsteg. Jpeg-Jsteg creates a JPEG stego-image from the
input of a message to be hidden and a lossless cover
image. According to the Independent JPEG Group,
the JPEG software we tested has been modified for 1-
bit steganography in JFIF output files, which are com-
posed of lossy and nonlossy sections. The software
combines the message and the cover images using the
JPEG algorithm to create lossy JPEG stego-images.

JPEG images use the discrete cosine transform to
achieve compression. DCT6 is a lossy compression
transform because the cosine values cannot be calcu-
lated exactly, and repeated calculations using limited
precision numbers introduce rounding errors into the
final result. Variances between original data values
and restored data values depend on the method used
to calculate DCT. For details, see Wayne Brown and
Barry Shepherd’s book on graphic file formats.7

In addition to DCT, images can be processed with
fast Fourier transformation and wavelet transforma-
tion.8 Other image properties such as luminance can
also be manipulated. Patchwork9 and similar techniques
use redundant pattern encoding or spread spectrum
methods10 to scatter hidden information throughout
the cover images (“patchwork” is a method that marks
image areas, or patches). These approaches may help
protect against image processing such as cropping and
rotating, and they hide information more thoroughly
than by simple masking. They also support image
manipulation more readily than tools that rely on LSB.

In using redundant pattern encoding, you must
trade off message size against robustness. For exam-
ple, a small message may be painted many times over
an image as shown in Figure 3 so that if the stego-
image is cropped, there is a high probability that the
watermark can still be read. A large message may be
embedded only once because it would occupy a much
greater portion of the image area.

Other techniques encrypt and scatter the hidden
data throughout an image. Scattering the message
makes it appear more like noise. Proponents of this
approach assume that even if the message bits are
extracted, they will be useless without the algorithm
and stego-key to decode them. For example, the White
Noise Storm tool is based on spread spectrum tech-
nology and frequency hopping, which scatters the
message throughout the image. Instead of having x
channels of communication that are changed with a
fixed formula and passkey, White Noise Storm spreads
eight channels within a random number generated by
the previous window size and data channel. Each
channel represents 1 bit, so each image window holds
1 byte of information and many unused bits. These
channels rotate, swap, and interlace among themselves
to yield a different bit permutation. For instance, bit
1 might be swapped with bit 7, or both bits may rotate
one position to the right. The rules for swapping are
dictated by the stego-key and by the previous win-
dow’s random data (similar to DES block encryption).

Scattering and encryption helps protect against hid-
den message extraction but not against message
destruction through image processing. A scattered
message in the image’s LSBs is still as vulnerable to
destruction from lossy compression and image pro-
cessing as is a clear-text message inserted in the LSBs.

Steganography’s niche in security is to supplement
cryptography, not replace it. If a hidden message is
encrypted, it must also be decrypted if discovered,
which provides another layer of protection.

EVALUATION EXAMPLES
To determine the limitations and flexibility of avail-

able software, we evaluated several steganographic
packages. Here we discuss only three: StegoDos, White
Noise Storm, and S-Tools for Windows. For details on
other tools, see the sidebar “For More Information.”

First, we selected message and cover files. In some
cases, we had to alter the selected images to fit into the
constraints of the software or had to use other cover
images. In all, we tested 25 files as cover images. For pur-
poses of this article, we discuss the results we obtained
with only two message files and two cover image files.

The first message file contained this plain text:

Steganography is the art and science of communi-
cating in a way which hides the existence of the

Steganography’s
niche in security is to

supplement
cryptography, not

replace it. If a hidden
message is

encrypted, it must
also be decrypted if
discovered, which
provides another

layer of protection.

.

communication. In contrast to cryptography, where
the “enemy” is allowed to detect, intercept and
modify messages without being able to violate cer-
tain security premises guaranteed by a cryptosys-
tem, the goal of steganography is to hide messages
inside other “harmless” messages in a way that does
not allow any “enemy” to even detect that there is
a second secret message present [Markus Kuhn
1995-07-03].

The second message file was an image, the satellite
image shown in Figure 4.

The cover images we used were Pierre-Auguste
Renoir’s “Le Moulin de la Galette” as shown in Figure
5 and a Droeshout engraving of William Shakespeare
as shown in Figure 6.

The image of Shakespeare is too small to contain the
Airfield, but we embedded the text message without
any image degradation. All the software we tested
could handle the 518-byte plain-text message and
embed it into the Shakespeare cover; however, some
could not process the Renoir cover and Airfield images.

February 1998 31

Figure 4. The satellite image we tested is of a major Soviet strategic bomber base
(http://edcwww.cr.usgs.gov/dclass).

For More Information
Additional readings, software, and

resources are available at http://isse.gmu.
edu/~njohnson/Steganography and http://
patriot.net/~johnson/Steganography.

Other tools are being developed that
take advantage of emerging technologies
and the understanding of steganography.
Steganography applications are available
on the Internet that run on a variety of
platforms, including DOS, Windows,
OS/2, Mac and Unix. Stego for the Mac,
EzStego for Java, and Stego Online are
steganography tools by Romana Machado
(http://www.stego.com). Stego is limited
to Pict files. EzStego and Stego Online,
written in Java, are limited to 8-bit GIF
images. Other applications now being
developed take advantage of broader band
multimedia transmissions such as video
and voice.

Steganography tools: Comments
Henry Hastur has created two tools:

Mandelsteg and Stealth. Mandelsteg gen-
erates Mandelbrot fractal images. If a file
name is passed as a parameter, the file is hid-
den in the mandelbrot image. Mandelsteg
does not manipulate any cover images other
than the fractal images it creates (ftp://idea.

sec.dsi.unimi.it/pub/security/crypt/code/).
Stealth (http://des.ex.ac.uk/~aba/stealth/)

is not a steganographic program but is cou-
pled with steganographic software on the
Internet because it complements stegano-
graphic methods. Stealth is a filter that
strips off the PGP header in a PGP-
encrypted file, leaving the encrypted data.
Why is this important? Applying steganog-
raphy to an encrypted message is more
secure than a plain text message. How-
ever, many encryption applications add
header information to the encrypted mes-
sage. This header information identifies the
method used to encrypt the data. For
example, if a cracker has identified hidden
data in an image and has successfully
extracted the encrypted message, a header
for the encryption method would point the
cracker in the right direction for additional
cryptanalysis. But if the header is removed
the cracker cannot determine the method
for encryption. Some steganography
programs provide this step in security,
but others do not. Two that do are Ray
Arachelian’s White Noise Storm (ftp://
ftp.csua.berkeley.edu/pub/cypherpunks/
steganography/wns210.zip) and Andy
Brown’s S-Tools, at ftp://idea.sec.dsi.
unimi.it/pub/security/crypt/code/s-tools3.

zip (version 3), ftp://idea.sec.dsi.unimi.it/
pub/security/crypt/code/s-tools4.zip (ver-
sion 4).

Hide and Seek by Colin Maroney had
some problems with minimum image sizes
(320 × 480). In version 4.1 of the software
(ftp://ftp.csua.berkeley.edu/pub/cypher-
punks/steganography/hdsk41b.zip), if the
image was smaller than the minimum,
then the stego-image was padded with
black space. If the cover image was larger,
the stego-image was cropped to fit. In ver-
sion 5.0, the same was true with minimum
image sizes. If any image exceeded 1,024
× 768, an error message was returned. The
Hide and Seek Version 1.0 for Windows
95 seems to have these issues resolved.

Additional steganography tools
StegoDos—Black Wolf’s Picture

Encoder v0.90B; public domain: ftp://
ftp.csua.berkeley.edu/pub/cypherpunks/
steganography/stegodos.zip.

Jpeg-Jsteg V4, ftp://ftp.funet.fi/pub/crypt/
steganography.

PictureMarc, Digimarc, Portland, Ore.,
http://www.digimarc.com.

SureSign, Signum Technologies, Chel-
tenham, England, http://www.signumtech.
com.

.

32 Computer

StegoDos
StegoDos is public-domain software that works

only with 320 × 200-pixel images with 256 colors. It
required too much effort when measured against the
results we obtained. Message encoding and decoding
required many steps, and we had to track the original
and modified files. Decoding the message required a
third-party program.

Because of the size restrictions, the Airfield and the
Renoir cover could not be used. We successfully hid
the text message in the Shakespeare cover. Little dis-
tortion occurred within the Shakespeare image itself,
but it was cropped and fitted into a 320 × 200 pixel

image. Figure 7 illustrates this distortion when the text
message is embedded.

StegoDos uses LSBs to hide messages, and it is less
successful than other tools. It also appends an end-of-
file character to the end of the message. But even with
the EOF character, the message retrieved from the
altered image is very likely to contain garbage at the
end. The original text file was 518 bytes. The extracted
file was around 8 Kbytes, and most of it was garbage.

White Noise Storm
White Noise Storm is a very effective steganogra-

phy application for DOS. We easily embedded the text
message in the cover images and could detect no
degradation. White Noise Storm could embed the
Airfield into the Renoir cover image. However, there
were problems with noise interfering with the image
integrity, which severely shifted the image’s palette, as
shown in Figure 8.

White Noise Storm also includes an encryption rou-
tine to randomize the bits within an image. (White
Noise’s use of encryption with steganography is well
integrated but beyond the scope of this article.) The
software uses the LSB approach and applies this
method to IBM Paintbrush (PCX) files. The software
extracts the LSBs from the cover image and stores
them in a file. The message is encrypted and applied
to these bits to create a new set of LSBs. The modified
bits are then injected into the cover image to create
the new stego-image. The main disadvantage of apply-
ing White Noise Storm’s encryption method to ste-
ganography is the loss of many bits that can be used to
hold information. Relatively large files must be used
to hold the same amount of information that other
methods provide with much smaller cover images.

S-Tools
S-Tools for Windows is the most versatile steganog-

raphy tool of all that we tested. Version 3 includes pro-
grams that process GIF and BMP images and audio
WAV files. S-Tools will even hide information in the
“unused” areas on floppy diskettes. Version 4 incorpo-
rates image and sound file processing into a single pro-
gram. In addition to supporting 24-bit images, S-Tools
also includes encryption routines with many options.

Although S-Tools applies the LSB method to both
images and audio files, we tested only images. The user
interface and prompts are easy to use, and the online
documentation is well developed. A useful feature is
a status line displaying the largest message size that
can be stored in an open cover file. This avoids wast-
ing time attempting to store a message that is too large
for a cover.

After the user hides the message, the software displays
the new stego-image, and the user can toggle between
the new and original images. At times the stego-image

Figure 5. The Renoir cover file example (access http://www.hs.port.ac.uk/wm/paint/
auth/renoir/moulin-galette/).

Figure 6. The Shakespeare cover
file example (access http://daphne.
palomar.edu/shakespeare/life.htm).

Figure 7. The result of embedding the text in the
Shakespeare cover with StegoDos.

.

may appear to be grossly distorted; however, after sav-
ing the stego-image it looks nearly identical to the orig-
inal. The distorted appearance may be due to memory
limitations or a bug in S-Tools. On occasion a saved
image was actually corrupted and could not be read.

S-Tools provided the most impressive results of any
package we tested because S-Tools maintained remark-
able image integrity. We noticed no distortions when the
text message was embedded in the Shakespeare cover.
Similarly, S-Tools yielded the result closest to the origi-
nal when we embedded the Airfield in the Renoir cover.

S-Tools provides many options for hiding and
encrypting data. The best covers are made from 24-bit
images and are processed quickly in S-Tools 4.0. Figure
9 shows the “after” image using a 24-bit BMP file. The
original file contains 195,891 unique colors, while the
resulting stego-image contains 312,340 unique colors.
To the naked eye, these images are the same.

S-Tools handles 8-bit images, such as GIF files, a bit
differently. Two options are available: boost it to a 24-
bit image or color reduction. To boost it to a 24-bit
image, the cover image is converted from an 8-bit
image to a 24-bit image. The result is similar to that
of Figure 9.

To apply color reduction instead, S-Tools creates an
8-bit stego-image by hiding a message in the 8-bit cover.
Before “spreading” the message across the LSBs of the
color levels in the image, S-Tools tries to reduce the
number of colors in the image. The reduction process
allows colors to be spread over several byte ranges so
that shifts of the LSBs cause little impact in the image
resolution. Visually differentiating between a 256-color
image and one reduced to 32 colors is difficult, accord-
ing to Andy Brown.5

Figure 10 illustrates the use of S-Tools on 8-bit
images. First, we converted the original image to a GIF
file. The conversion reduced the colors from 195,891
unique colors to 248 unique colors. In the process of
hiding the Airfield image, the 8-bit Renoir cover image
was reduced from 248 to 32 unique colors. Even with
these apparently severe modifications, the resulting
stego-image is impressively similar to the original
Renoir cover image. The final GIF image has 256
unique colors versus 248 for the original converted GIF.

Figure 11 shows both the 256-color palette with
248 unique colors of original image converted to an
8-bit GIF image and the 256-color palette created
from the S-Tools color reduction and hiding the
Airfield image.

Steganography goes well beyond simply embed-
ding text in an image. It also pertains to other
media, including voice, text, binary files, and

communication channels. For example, the plans of
a top-secret project—device, aircraft, covert opera-
tion, or trade secret—can be embedded, using some

February 1998 33

Figure 8. The Renoir cover file after the Airfield image was embedded with White Noise
Storm. The palette has shifted severely.

Figure 9. The result of embedding the Airfield image in the Renoir cover with S-Tools.

Figure 10. Result of embedding the Airfield image in the 8-bit Renoir with S-Tools. In the
process, the cover image was reduced from 248 to 32 unique colors.

.

34 Computer

steganographic method, on an ordinary audio cas-
sette tape. The alterations of the expected contents of
the tape cannot be detected by human ears and prob-
ably not easily by digital means. Part of secrecy is of
course in selecting the proper mechanisms.

Steganography by itself does not ensure secrecy, but
neither does simple encryption. If these methods are
combined, however, stronger encryption methods
result. If a message is encrypted and then embedded in
an image, video, or voice, it becomes even more
secure. If an encrypted message is intercepted, the
interceptor knows the text is an encrypted message.
But with steganography, the interceptor may not know
that a hidden message even exists.

Digital image steganography and its derivatives are
growing in use and application. Where cryptography
and strong encryption are outlawed, steganography
can circumvent such policies to pass messages covertly.
Commercial applications of steganography—digital
watermarks and digital fingerprinting—are now in use
to track the copyright and ownership of electronic
media.

Steganography’s ease of use and availability has law
enforcement concerned with trafficking of illicit mate-
rial via Web page images, audio, and other files.
Researchers are investigating methods of message detec-
tion and testing the thresholds of current technology.

Development in covert communications and
steganography will continue, as will research in build-
ing more robust digital watermarks that can survive
image manipulation and attacks. The more informa-
tion that is made available on the Internet, the more
owners of such information need to protect themselves
from theft and false representation. ❖

References
1. C. Kurak and J. McHugh, “A Cautionary Note On

Image Downgrading,” Proc. IEEE Eighth Ann. Com-
puter Security Applications Conf., IEEE Press, Piscat-
away, N.J., 1992, pp. 153-159.

2. B. Pfitzmann, “Information Hiding Terminology,” Proc.
First Int’l Workshop Information Hiding, Lecture Notes
in Computer Science No. 1,174, Springer-Verlag, Berlin,
1996, pp. 347-356.

3. T. Aura, “Invisible Communication,” EET 1995, tech-
nical report, Helsinki Univ. of Technology, Finland, Nov.
1995; http://deadlock.hut.fi/ste/ste_html.html.

4. I. Cox et al., “A Secure, Robust Watermark for Multi-
media,” Proc. First Int’l Workshop Information Hiding,
Lecture Notes in Computer Science No. 1, 174, Springer-
Verlag, Berlin, 1996, pp. 185-206.

5. A. Brown, S-Tools for Windows, 1994, ftp://idea.sec.
dsi.unimi.it/pub/security/crypt/code/s-tools3.zip.

6. E. Koch, J. Rindfrey, and J. Zhao, “Copyright Protec-
tion for Multimedia Data,” Proc. Int’l Conf. Digital
Media and Electronic Publishing, Leeds, UK, 1994.

7. W. Brown and B.J. Shepherd, Graphics File Formats:
Reference and Guide, Manning Publications, Green-
wich, Conn., 1995.

8. X-G. Xia, C.G. Boncelet, and G.R. Arce, “A Multireso-
lution Watermark for Digital Images,” IEEE Int’l Conf.
Image Processing, IEEE Press, Piscataway, N.J., 1997.

9. W. Bender et al., “Techniques for Data Hiding,” IBM
Systems J., Vol. 35, Nos. 3 and 4, 1996, pp. 313-336.

10. I.J. Cox et al., “Secure Spread Spectrum Watermarking
for Multimedia,” Tech. Report 95-10, NEC Research
Inst., Princeton, N.J., 1995.

Neil F. Johnson is a research associate for the Center
for Secure Information Systems (http://isse.gmu.
edu/~csis) in the School for Information Technology
Engineering at George Mason University and a PhD
candidate in information technology. His current
research interest is steganography. He received an MS
in information systems from George Mason Univer-
sity and a BBA in computer information systems from
James Madison University.

Sushil Jajodia is director of the Center for Secure
Information Systems and professor of Information
and Software Systems Engineering at George Mason
University. His research interests include information
security, temporal databases, and replicated databases.
Jajodia received a PhD in mathematics from the Uni-
versity of Oregon, Eugene. He is the founding co-
editor-in-chief of the Journal of Computer Security, a
member of the editorial boards of IEEE Concurrency
and International Journal of Cooperative Informa-
tion Systems, and a contributing editor of Computer
& Communication Security Reviews. Jajodia is a
senior member of the IEEE and a member of the IEEE
Computer Society and the ACM.

Contact Johnson and Jajodia at the Center for Secure
Information Systems, Dept. of Information and Soft-
ware Systems Engineering, George Mason University,
Fairfax, VA 22030-4444; {njohnson, jajodia}@
gmu.edu.

Figure 11. (a) Palette
of the 8-bit Renoir
cover image before
embedding the
Airfield image; (b)
palette of the 8-bit
Renoir cover image
after embedding the
Airfield image.

(a) (b)

.

